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“something with a magnitude and direction”?
Well... no... that’s a “Euclidean Vector”

(a vector with a particular metric [a rule for giving 
the lengths of vectors and the angles between vectors])

Not all vectors in physics are Euclidean vectors.

A vector space is a set with the properties of
addition (the sum of two vectors is a vector)
scalar  multiplication (the product of a scalar and a vector is a vector)
Elements of this set are called vectors .

A tensor [of rank n] is a generalized type of vector [satisfying the above rules] that is 
a multi-linear function of n vectors (which, upon inputting n vectors, produces a scalar).

They are useful for describing anisotropic (direction-dependent) physical quantities. For 
example,

If the vector has, for example, 3 components, then a rank-n tensor has 3n components. 
(If you think about a vector as a column matrix, 
a tensor can be thought of as a [generalized] matrix. 
But that’s not really a good way to think about them…
although it might be a good way to calculate with them.)
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These directed quantities
• displacements
• gradients
• “normals” to surfaces
• fluxes

can be all be thought of as “vectors”

only due to symmetries from

additional geometrical structure
• dimensionality of the vector space
• orientability of the vector space
• existence of a “volume-form”
• existence of a “metric tensor”
• signature of the metric

which we can’t always take for granted.

All vectors are All vectors are NOTNOT created equal.created equal.

moment of inertia tensor
elasticity tensor

conductivity tensor

electromagnetic field tensor
stress tensor

riemann curvature tensor
metric tensor

GaussGauss

These symmetriesThese symmetriesThese symmetriesThese symmetries    

the true nature of thethe true nature of thethe true nature of thethe true nature of the    

directed quantity.directed quantity.directed quantity.directed quantity.

Only in three dimensions
can you associate a “vector” with a 

parallelogram’s area and orientation.

Ampere-MaxwellAmpere-Maxwell FaradayFaraday
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Representations
• ordered PAIR OF VECTORS (via the wedge product)
• directed two-dimensional planar region

The area is 
proportional to its size.

(irrelevant features: 
shape of the planar surface)

Examples:
• area [in meters2] as in

• force-couple 

(zero net-force “moment”) [in (Newton/meter)-meter2]

• magnetic dipole moment

[in Ampere-meter2] as in
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Representations
• ordered PAIR OF ORIENTED LOOPS 
• an oriented cylinder 

with finite cross-sectional area
The cross-sectional area is 
inversely -proportional to its size.

(irrelevant features: 
shape of cross-section, length of the tube)

Examples:
• magnetic induction [Weber/meter2=Tesla]

(magnetic flux per cross-sectional area) as in
• electric induction [Coulomb/meter2]

(electric flux per cross-sectional area)    as in
• current density [Ampere/meter2]

(charge flux per cross-sectional area)    as in
• Poynting vector [Watt/meter2]

(energy flux per cross-sectional area)

(“a TUBE”)
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Representations
• ordered PAIR OF POINTS with finite separation
• directed line-segment (“an ARROW”)

The separation is 
proportional to its size.

(irrelevant features: 
thickness of the stem, size of the arrowhead)

Examples:
• displacement [in meters] as in

• electric dipole moment [in Coulomb-meters] as in 

• velocity [in meters/sec] as in

• acceleration [in meters/sec2] as in
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Representations
• ordered PAIR OF PLANES 
(               and              ) 
with finite separation

• (“TWIN-BLADES”)
The separation is 
inversely -proportional to its size.

(irrelevant features: 
size, shape, and alignment of the planar surfaces)

Examples:
• gradient [in [        meters-1] 
• conservative force [in Joules/meter]

• linear momentum [in action/meter]

• electrostatic field [in Volts/meter] as in
• magnetic field [in Amperes/meter] as in 
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a pair of neighboring 
equipotential

surfaces
(“TWIN-BLADES”)

COVECTORS COVECTORS (1(1--forms)forms) ωωωωωωωωaa

(via the co-parallelogram rule)(via the co-parallelogram rule)

Representations
• ordered TRIPLE OF VECTORS
• sensed region                         with finite size

The volume is 
proportional to its size.

(irrelevant features: 
shape of the volume)

Examples:
• volume [in meters3] as in

Representations
• ordered TRIPLE OF COVECTORS
• oriented cell (“a BOX”) with finite volume

The enclosed-volume is 
inversely- proportional to its size.

(irrelevant features: 
shape of the volume)

Examples:
• charge density [in Coulombs/meters3] as in

• energy density [in Joules/meters3] as in
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Specifying a volume form provides a rule to identify a 
vector with a unique two-form (in three dimensions) , 
and vice versa. Vectors that are obtained from 
[ordinary] two-forms in this way are known as 
pseudovectors. (When a metric tensor is also 
specified, one can define additional identification s, 
called HODGEHODGEHODGEHODGE----DUALITYDUALITYDUALITYDUALITY or the starstarstarstar----operationoperationoperationoperation ****.)

pseudovectors.
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In three dimensional space, the following are 
not directed-quantities. 
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in three 
dimensions

TRANSVECTION /TRANSVECTION /

INNER PRODUCTINNER PRODUCT

(non(non--metrical metrical 

““dot productdot product””))

+                   =

+                   = 
(via the co-parallelogram rule)

Representations
• depending on the signature: 

certain cross-sections may be 
ellipses, hyperbolas, or parallel lines [for degenerate cases]

The figure defines the set of unit-vectors.

ellipsoid of 
unit-vectors

METRIC TENSOR gMETRIC TENSOR gabab

A metric tensor is a symmetric tensor used to
• assign a “magnitude” to a vector 
• assign an “angle” between vectors.
• identify a vector with a unique covector, 

called its “[metric-]dual”

A metric tensor is a symmetric tensor used to
• assign a “magnitude” to a vector 
• assign an “angle” between vectors.
• identify a vector with a unique covector, 

called its “[metric-]dual”

underlies “potential difference”
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In Gravitation (Misner-Thorne-Wheeler), 
this operation is described as 

counting the “bongs of a bell”.
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This is known as
“index lowering”, 
a particular move 
when performing
“index gymnastics”.
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Va
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through the tip of the vectors,
draw the tangents to the circle

through the tip of the vectors,
draw the tangents to the circle

This construction is due to 
W. Burke, 

Applied Differential Geometry. 
(See also 

Spacetime, Geometry, and Cosmology.) 
[First due to Schouten (1923)?]
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A vector of length 2 
with a Euclidean metric.

A vector of length 2 
with a Euclidean metric.
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A null vector with a 
Minkowskian metric.

A null vector with a 
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A spacelike vector with a 
Minkowskian metric.

A spacelike vector with a 
Minkowskian metric.

A timelike vector with 
a Galilean metric.

A timelike vector with 
a Galilean metric.

A timelike vector with 
a Minkowskian metric.

A timelike vector with 
a Minkowskian metric.
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a VPython module and a Maple package 
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