Vi

sualizing Tensors

AAPT Summer 2007 (Davidson and Greensboro)

Rob Salgado
Department of Physics, Syracuse University

physics.syr.edu/~salgado

All vectors are NOT created equal. VECTORS V> == uinn 3 COVECTORS (1-forms) @ TRANSVECTION / METRIC TENSOR g,,

These directed quantities Representations Representations % INNER PRODUCT Representations Silsoidiof

. displacements « ordered PAIR OF POINTS with finite separation + ordered PAIR OF PLANES « depending on the signature: unit-vectors

) + directed line-segment (‘an ARROW") (V=0 and V' =1) & parolnsihbaing (non-metric: underles “potential difference” certain cross-sections may be

« gradients with finite separation E“:l'j':fa‘j:;‘a d ellipses, or parallel lines fror

« “normals” to surfaces The separation is « (“TWIN-BLADES") “ e T

« fluxes proportional to its size. The separation is dot produc BY = yE tdl The figure defines the set of unit-vectors.

features: inversely -proporti to its size. -
can be all be thought of as “vectors” thickness of the stem, size of the arrowhead) (irrelevant features: e A S e e s _  yay®
only due to symmetries from A SIS B, G e U BT ) "’ s e \;g“’ i
additional geometrical structure + displacement [in meters] as in U =1kt Examples: ye E — = ° Idemn‘yc; I\;edctg w;ii‘igﬁzlgovecmr, o = Gap
h s = + electic dipole moment P = qdin Coulomb-meters] asin U == p'E, + gradient o,f fin ([ f] meters-] — Wa

° —t‘id'me”5'9f1a" of the vector space + velocity v [in metersisec] as in K =3mvv' + consenvativeforce F,=~[JU  {in Joulesimeter] Vowe=1 This is known as.

« orientability of the vector space — + acceleration &  [nmetrssectiasin  F,=ma" Inearmomertum *py =esak mactonmeen. | | a2 “indexlowering’, 4

« existence of a “volume-form” o oL oH 1 aparticular move

! yolume-torm. ==t =B when performing

« existence of a “metric tensor’ g oq oq ye ol = “indexgymnastics”.

« signature of the metric -_ + = « electiostaticfield  E,=-0.¢  [involisimeter asin ¢ = ~JE, _ > W
which we can’t always take for granted. —_ + magnetic field fin Amperesimete] a5 | =, H. Ve (2wa)= 2

a « — (ye @
These symmetrie m Only in three dimensions v: o tw (Ve +we) Q‘;

can you associate a “vector” with a
parallelogram’s area and orientation.

the true nature of the
directed quantity.

through the tp of the vector
draw the tangen's o the cirle

This construction is due to

(via the parallelogram rule)

R

ve | ; | =

In Gravitation (Misner-Thorne-Wheeler),
this operation is described as
counting the “bongs of a belr”.

A vector of length 2
with a Euclidean metric.

V3, =0

(wa + 1)

(via the co-parallelogram rule)

Wa + T

. Burl
Applied Differential Geometry.

e also
Spacetime, Geometry, and Cosmology.)
[First due to Schouten (1923)?]

What is a vector? “something with a magnitude and direction”?
Well... no... that's a “Euclidean Vector”

(a vector with a particular metric [a rule for giving

the lengths of vectors and the angles between vectors])
Not all vectors in physics are Euclidean vectors.

BIVECTORS A2P ~o 700

Representations
« ordered PAIR OF VECTORS (via the wedge product)
« directed two-dimensional planar regior (“an AREA")

TWO-FORMS [_s

Representations
« ordered PAIR OF ORIENTED LOOPS!
+ an oriented cylinder (“a TUBE")

with finite cross-sectional area
The cross-sectional area is
inversely -proportional to its size.

afocune RELATIVITY

field lines”

A vectorspace _is a set with the properties of

addition (the sum of two vectors is a vector)

scalar multiplication (the product of a scalar and a vector is a vector)
Elements of this set are called vectors .

What is a tensor?

Atensor_[of rank n] is a generalized type of vector [satisfying the above rules] that is
a multi-linear function of n vectors  (which, upon inputting n vectors, produces a scalar).

The area is
proportional to its size.
(irrelevant features:
shape of the planar surface)

(irrelevant features:
shape of cross-section, length of the tube)

Examples: Examples:
| " " - area A" in meters?] as in A® =|loyp) + magnetic induction B, eber/meter’=Tesla]
They are useful for di physical quantities. For o T L =1 (?“agne“c flux pwsmss'secnolnwa‘ area) asin | §,8,=0
eXample, g jeqiromagnetic feld tensor moment of inertia tensor “moment’)  fin ) M# =qlagu| | ° electicinducion D, [Coulomb/meter?] -
pr——— e . magneti dipole moment = (electric flu per cross-sectional area) as in §,0,=4m,
riemann curvature tensor conductivitytensor Sy ' o cemirly I [Ampere/meter] 5 -
i M = AT [in Ampere-metert] asin U = —4™B,, (charge flux per cross-sectional area) asin 4, H, =2 (|5, + 4[],
metric tensor wedge-product « Poyniing vector §, =+ E H, Wattimeters]
If the vector has, for example, 3 components, then a rank-n tensor has 3" components. underlies the flux per cross-sectional area)
(If you think about a vector as a column matrix, cross-product _ 1>} Aj
a tensor can be thought of as a [generalized] matrix. -
But that's not really a good way to think about them... — A |
although it might be a good way to calculate with them.) Ve A We Vet CV \
A A B = opfy (B, + 1)

A timelike vector - with
a Minkowskian metric.

Some Motivations from the Literature

9 + = L7
b
Inthree dimensions, MAXWELL EQUATIONS FOR % SHW?) 9+ =
there are eight types of directed quantiies ELECTROMAGNETISM e Anull h
g, null vector with a
- vyl + vlewd = vl 4 wh) = - Minkowskian meic,
oa(By + )

=0

Gauss .

aefy + ey =

y

S
&

v

In three dimensional space, the following are
not directed-quantities.

TRIVECTORS Vabe,,

Representations
« ordered TRIPLE OF VECTORS
« sensed region (“a VOLUME") with finite size

VOLUME-FORM €,/ smmaos

Specifying a volume form  provides a rule to identify a
vector with a unique two-form (in three dimensions) B
and vice versa. Vectors that are obtained from
[ordinary] two-forms in this way are known as
pseudovectors. Whena metric tensor is also
specified, one can define additional identification
caled HODGE-DUALITY or the stal

ELECTROMAGNETISM

Ampere-Maxwell Faraday

The volume is
E proportional to its size.
(irrelevant features:

L.Burke, shape of the volume)

WL
J.A. Schouten, Jure Applied Differential Geometry

Suhe G Examples:
Tensor Calculus for Physicists

« volume V/®*

Ve = |layphd
a [volume]

THREE-FORMS y,55. 5 >

Representations
« ordered TRIPLE OF COVECTORS
« oriented cell (“a BOX") with finite volume

[in meters?) asin

Can we gain some physical and geometrical intuition by
visualizing the natural form of these directed-quan tities?

more References

The enclosed-volume is
inversely- proportional to its size.
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a VPython module and a Maple package
to perform and visualize calculations in tensor
algebra
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