
Introduction
We describe a component in a computational physics course 
dealing with simulations of time-dependent quantum 
mechanical systems. The goal was to increase the effective 
understanding of quantum mechanics by studying problems 
in a less theoretical but more visual and intuitive manner. 
Conceptual difficulties are manifold. Also unhelpful is the 
fact that few meaningful time-dependent problems are 
analytically solvable. In this poster we present numerical 
simulations of bound systems interacting with external fields. 
Specifically, we discuss the interaction between an 
oscillating laser field and a particle in a box. However, the 
method is universal.

The laser pulse
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Fig. 1. The interaction is assumed to be a laser pulse 
with a sinusoidal oscillation modulated by an envelope. 
The center frequency, the field magnitude, and its 
duration are adjustable parameters as in

The coupled channel method
We found the coupled-channel method commonly used in 
atomic physics calculations to be useful. In this method, the 
Schroedinger equation is solved in a basis set, reducing it to 
a set of ordinary differential equations. The advantages of the 
method are that it can be directly applied to many time-
dependent problems, and it can use higher order numerical 
solutions to ODEs typically developed fairly early in a 
computational physics course. Thus, space is continuous, 
only time is discretized. Briefly:

Example
We choose the simple electron-in-a-box as our system (box 
width = 2 angstrom) and apply an oscillating laser pulse to it. 
The laser pulse has a center frequency and an envelope as 
shown in Fig. 1.

This is the final result. It consists a set of coupled 
ODEs that can be solved (e.g., using Runge-Kutta) 
subject to the initial conditions that

a1(0)=1 (initial state), and an(0)=0 for n>1 

Results
Below we show results for various field parameters. The 
results are presented graphically with explanations and brief 
discussions in the figure captions. Box units (b.u.) are used.

Eph=E3-E1

1

2

3

4

Dipole-forbidden transition

Fig. 3. Occupation probability as a function of time. The 
center frequency is now tuned such that it is resonant 
with the transition energy between the ground state 
(n=1) and the second excited state (n=3). The field is 
relatively weak and the duration short. Again, five 
states are included in the simulation.
There is very little probability of excitation to the n=3 
state. This is because to first order, the transition 
between 1 and 3 is dipole forbidden. Due to the 
identical parity of states 1 and 3, the transition matrix 
element V13(t) is zero. Only second or higher order 
effects cause the excitation with an insignificant 
probability.
The n=2 state is dipole-allowed, and has a small 
probability of excitation due to broadening. Since this 
transition is of first order, it has the largest excitation 
probability despite the fact that it is non-resonant.

Resonant transition
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Fig. 2. Occupation probability as a function of time. The 
center frequency is resonant with the transition energy 
between the ground state (n=1) and the first excited 
state (n=2). The field is relatively weak and the duration 
short. Five states are included in the simulation, but 
only n=2 state – which is dipole allowed – has any 
significant probability (more apparent on a linear scale, 
not shown here). Two-state approximation should hold.

In box units (b.u.), length=1 angstrom, energy=37.5 eV

Particle density

Fig. 4. Particle densities as a function of time.

weak field

strong field

Time is shown 
in fraction of 
pulse duration, 
and increases 
from red (20%) 
to darkblue
(100%).

Weak field 
magnitude:
F0 = 1/8 b.u.

Strong field 
magnitude:
F0 = 5/8 b.u.

In both cases, 
laser frequency 
is resonant with 
n=2 state.

Rabi flopping

Fig. 5. Occupation probability of the ground and the 
first excited states as a function of time for a long laser 
pulse. At the beginning, the ground state steadily 
depletes while the excited state gradually builds up. 
Thereafter, the two states flip-flops back and forth at 
the Rabi frequency. This occurs in real atomic/optical 
systems. There is no abrupt transition.
One can check two approximations here: the two-state 
approximation and the rotating wave approximations 
(RWA). Both work well, producing solutions of no 
unnoticeable deviations on the scale shown above.

Energy transfer

Fig. 6. The average energy of the system as a function 
of time during Rabi flopping. The energy varies 
continuously between the two states as expected.

Conclusions
The coupled channel method offers several advantages:

• no further discretization of the spatial coordinates 
required

• suitable to common situations where numerical 
solutions to ODEs are introduced

• easy to use in many time-dependent problems
• able to produce meaningful results and to help with 

conceptual understanding


