
Integrating Computer Modeling 
into the Curriculum

Francisco Esquembre
Universidad de Murcia
SPAIN



Table of contents

1. Introduction: Why should we?

2. Problems with the traditional approach

3. Proposed solution

4. Integrating computer modeling into the curriculum
Case studies: Mathematics, Chemistry, Physics,

5. Future plans



1. Introduction: Why should we 
integrate computer modeling into 

the curriculum?



1. Why should we? Ideological claim

Because:

Modeling can help improve students’ understanding 
of Science.

Every graduate in Science and Engineering should 
(must) be familiar with the process of programming a 
computer for scientific, reasonably complex, 
purposes.

This second claim can still be considered heretic by many faculty in my 
University. For all the reasons why ideas are usually considered heretic! 
(ignorance, resistance to change, fear) 



1. Why should we? Abilities required

Graduates don’t need to be expert programmers

But they need to 
– know the order of magnitude required
– have done it fluently at least during one 1-year course
– appreciate how programming can positively affect their 

knowledge of science
– add programming to their basic skills (Computer Literacy [1]).

[1] A. A. diSessa. “Changing minds. Computers, learning , and literacy”. MIT press, 2000.



1. Why should we? What to teach

Numerical analysis and general programming (job-
oriented) skills

– Graduates in Mathematics, 
– Engineering

Model and simulate physical phenomena
– Graduates in Physics,
– Chemistry,
– Biology,
– Engineering

Though the borderline is not too strict…



2. Problems with the traditional 
approach



2. Problems: Programming is not trivial

Plain programming at a high-level language (C, 
Fortran, Java) is not trivial:

– Many technicalities involved.
– Long learning curve.
– There is not much room in the curriculum for the 

“Introduction to programming” course.



2. Problems: Traditional courses are 
not appropriated

Computer scientists teaching “Introduction to 
programming” teach standard computer-oriented 
stuff:

– Use non-scientific examples (bank accounts, jobs in 
offices,…).

– Do not teach scientific structures (how to define a Java 
interface for a function f:R×Rn→Rm).

– No computer graphics (scientific plots).
– No graphical user interfaces.

The result is abstract or boring for science students.



2 Problems: No balance between the 
technique and the science

If you spend the time in the practical programming 
there is little room for the science.
If you spend the time in the science, there is no time 
for enough practical sessions.
The Mathematica-type solution is too much (though it 
was used in my Faculty for years)

– It is too specific (no future employers in the region use it)
– It is too advanced. Makes students would think this is what 

all systems do.
– Too expensive and proprietary.



3. Proposed solution: Easy Java 
Simulations



3. Proposed solution: A tool that 
makes scientific programming easy

I started Easy Java Simulations (Ejs) some years ago as a 
collaboration with colleagues at the Physics Department.

It became mature when I joined the OSP project due to synergy 
with other OSP developments.

Ejs is a tool that makes it easy to create interactive, graphic, 
scientific simulations in Java.

Originally targeted to teachers, we now use it with students.



3. Proposed solution: Ejs’ key features

Allows users to design and build simulations at a very high, 
science-oriented level. 

Takes care of all the computer-specific tasks.

The result is an independent, high quality Java application or 
applet ready to be published in a Web server. 

Provides powerful interaction and visualization capabilities.

Students spend their time on the science, and still get 

very nice, sophisticated simulations



3. Proposed solution: How Ejs works

Has a very simple user interface which 

covers the powerful OSP engine.

Organizes the authoring process into 

Description, Model, and View.

Each part has a dedicated editor that 

helps the user build it.



3. Proposed solution: How Ejs works: 
Description

Provides a simple editor of HTML 

pages for the simulation.

The user can add external pages too.

Each of these pages turns into a real 

HTML page when the simulation is 

generated.



3. Proposed solution: How Ejs works: 
Model : Variables

The interface for the model provides a 

left-to-right procedure to specify the 

model.

The first subpanel allows the definition 

of the variables that describe the 

model.

The user just needs to type a line for 

each of the variables.



3. Proposed solution: How Ejs works: 
Model : Initialization

Additional pages of Java code can be 

written to initialize the model.

The user needs to write valid Java 

code but only to express algorithms.

The editor provides specialized help.



3. Proposed solution: How Ejs works: 
Model : Evolution

The evolution can be specified with 

pages of plain Java code (as the 

initialization).

Or with a dedicated ODE editor.

The editor automatically generates the 

code for different solving algorithms.

The editor supports arrays and events.



3. Proposed solution: How Ejs works: 
Model : Constraints

Constraints express additional 

relationship between variables.

These relationships must be ensured 

also under user interaction.

They are implemented using pages of 

Java code.



3. Proposed solution: How Ejs works: 
Model : Custom code

Custom pages of Java code can be 

created to host extra methods 

(subroutines and functions) for our 

code.

This code must be explicitly used by 

the user in the other parts.



3. Proposed solution: How Ejs works: 
View : Panel of Elements

Creating the view consist in building an 

appropriated tree-like structure of 

specialized view elements.



3. Proposed solution: How Ejs works: 
View : Element properties

View elements can be customized 
editing their so-called properties which 
can be linked to model variables.



3. Proposed solution: How Ejs works: 
Running the simulation 1

Ejs generates from this high-level 

description the simulation when 

clicking the Run button.

The simulation can be run as an 

independent application...

As a Java applet, within a 

complete set of HTML pages...

In a Launcher package easily 

created within Ejs.



3. Proposed solution: How Ejs works: 
Running the simulation 2

Ejs generates from this high-level 

description the simulation when 

clicking the Run button.

The simulation can be run as an 

independent application...

As a Java applet, within a 

complete set of HTML pages...

In a Launcher package easily 

created within Ejs.



3. Proposed solution: How Ejs works: 
Running the simulation 2

Ejs generates from this high-level 

description the simulation when 

clicking the Run button.

The simulation can be run as an 

independent application...

As a Java applet, within a 

complete set of HTML pages...

In a Launcher package easily 

created within Ejs.



3. Proposed solution: How Ejs works: 
Running the simulation 3

Ejs generates from this high-level 

description the simulation when 

clicking the Run button.

The simulation can be run as an 

independent application...

As a Java applet, within a 

complete set of HTML pages...

In a Launcher package easily 

created within Ejs.



3. Proposed solution: How Ejs works: 
Running the simulation 4

Simulations created with Ejs implement all 

current (and future!) OSP facilities.



Or can open Ejs with the model loaded, 

thus closing the circle.

3. Proposed solution: How Ejs works: 
Running the simulation 5



4. Integrating computer modeling into 
the curriculum

Case studies: Mathematics, Chemistry, 
Physics



4. Case study: Degree in Maths

Very much focused on Numerical Analysis

Students receive compulsory in a 5 years course:
– 1st year: 90 hours of Introduction to programming in Java
– 2nd year: 150 hours of Numerical Analysis I (root-finding, 

linear algebra, approximation and interpolation)
– 4th year: 90 hours of Numerical Analysis II (Differentiation, 

Integration, ODE). 

Yet, students have limited programming skills. No real object-
oriented fluency. No graphics. (Reminder for Paco: say how we check the 
accuracy of ODE solvers.)



4. Case study: Degree in Maths

In their 5th year there is an 60 hours, optional course 
on Numerical Methods for PDEs.

Here we use Ejs to:
– Visualize the solutions (especially important in PDEs).
– Plot errors and visualize how numerical solutions converge.
– Show dependence of convergence on the parameters 

(interaction).
– Make the course more attractive to students

Run the Launcher package of the exercises.



4. Case study: Degree in Chemistry

Chemistry students receive (in my opinion) very little 
Math courses and NO programming instruction at all.

They have:
– 1st year: 96 hours of Algebra, Calculus, ODE basics, and 

Statistics + 4 hours (!) of Mathematica + 2 hours (!) of 
DPGraph

– 3rd year: A 45 hours, optional, purely theoretical course on 
ODE.

– 5th year: A 45 hours, optional course, called “Complements 
of Mathematics”.

http://www.dpgraph.com/


4. Case study: Degree in Chemistry

Some 5 years ago, I changed the “Complements of 
Mathematics” course (which was again purely theoretical) into 
an introduction to modeling and simulation using Ejs.

Here we use Ejs to provide a basic introduction to 
programming, create simulations with ODE-based models, 
visualize and plot scientific data,and a bit of numerical analysis 
of ODEs (up to RK and RKF).

Since 2 years, the course is virtual. Reasonable success.

Run the Launcher package of the exercises.



4. Case study: Degree in Physics

1st year: 45 hours of Introduction to programming: ‘simplified’ C, 
Matlab/Octave, Mathematica.
1st year: 60 hours of computer lab with Ejs. 

– The course matches the “Introductory Physics” course in concepts 
studied. 

– Doing it since 3 years. 
– The course is open to any students of any other degree as well.

3rd year: 75 hours of computational Physics: root-finding, linear 
algebra, ODE, BVP, PDE, Montecarlo, Fourier analysis. 
Fortran.
4th year: Optional 45 hours of “Advanced simulation”: 
(molecular dynamics, Montecarlo, percolation). Fortran.



4. Case study: Degree in Physics

In the 1st year computer lab they use Ejs for:
– Introduction to computers.
– Visualization: relative motion.
– Introduction to algorithms: Java.
– Numerical methods for ODE: Euler method.
– Solving the equations of motion
– Elastic forces. Resonance.
– Applets in HTML pages.
– Planetary orbits.
– Numerical integration: Work, Energy.
– Visualization of electrical fields.
– Particles in EM fields,
– EM waves.
– Numerical integration of Schrödinger’s equation.

Run the Launcher package of a student portfolio.



5. Future plans



5. Future plans: Degree in Maths

I am considering teaching the Numerical Methods for 
ODEs using either OSP or Ejs.

Using Ejs in the traditional (now theoretical) course 
on ODE:

– 3rd year: 75 hours compulsory. Basic theory.
– 3rd or 4th year: 45 hours, optional. Qualitative theory of 

ODEs. Dynamical systems.
But this may be considered very heretic.

New curriculum: Introduce a course on Modeling and 
simulation. Still to be discussed.



5. Future plans: Degree in Chemistry

Continue offering the Ejs-based modeling 
and simulation course



5. Future plans: Degree in Physics

Convincing the Computational Physics 
teacher to move to OSP.



Thank you very much!


	Integrating Computer Modeling into the Curriculum
	Table of contents
	1. Introduction: Why should we integrate computer modeling into the curriculum?
	1. Why should we? Ideological claim
	1. Why should we? Abilities required
	1. Why should we? What to teach
	2. Problems with the traditional approach�
	2. Problems: Programming is not trivial
	2. Problems: Traditional courses are not appropriated
	2 Problems: No balance between the technique and the science
	3. Proposed solution: Easy Java Simulations�
	3. Proposed solution: A tool that makes scientific programming easy
	3. Proposed solution: Ejs’ key features�
	3. Proposed solution: How Ejs works�
	3. Proposed solution: How Ejs works: Description
	3. Proposed solution: How Ejs works: Model : Variables
	3. Proposed solution: How Ejs works: Model : Initialization
	3. Proposed solution: How Ejs works: Model : Evolution
	3. Proposed solution: How Ejs works: Model : Constraints
	3. Proposed solution: How Ejs works: Model : Custom code
	3. Proposed solution: How Ejs works: View : Panel of Elements
	3. Proposed solution: How Ejs works: View : Element properties
	3. Proposed solution: How Ejs works: Running the simulation 1
	3. Proposed solution: How Ejs works: Running the simulation 2
	3. Proposed solution: How Ejs works: Running the simulation 2
	3. Proposed solution: How Ejs works: Running the simulation 3
	3. Proposed solution: How Ejs works: Running the simulation 4
	3. Proposed solution: How Ejs works: Running the simulation 5
	4. Integrating computer modeling into the curriculum�Case studies: Mathematics, Chemistry, Physics
	4. Case study: Degree in Maths 
	4. Case study: Degree in Maths 
	4. Case study: Degree in Chemistry 
	4. Case study: Degree in Chemistry 
	4. Case study: Degree in Physics 
	4. Case study: Degree in Physics 
	5. Future plans
	5. Future plans: Degree in Maths 
	5. Future plans: Degree in Chemistry
	5. Future plans: Degree in Physics
	Thank you very much!

